CHAdeMO に準拠した電池推進船の電力システム構成

東京海洋大学 ◎佐藤征哉 木船弘康 大出 剛

1. はじめに

電池推進船に搭載されるリチウムイオン電池のエ ネルギー密度は、軽油のような液体燃料と比較する と1/20程度であるから、電池推進船の航続距離や航 続時間を内燃機関と同等にするのは困難である。そ のため電池推進船は短距離運航に用いることが考え られる。また、内燃機関を持たないことから燃料油 や、排ガス特有の臭いが無く、振動、騒音のレベル も極端に低いことから旅客輸送に適している。これ らのことから、電池推進船は定期観光客船への適用 が期待されている。定期観光船は1日の間に複数回 運航する性能を持つことが求められると、大容量の 電池を搭載しなければならない。しかしそれは建造 費の増加というコスト面と重量及び船内設置スペー スの確保という船体計画の面で課題が多くなる。一 方で搭載電池容量にある程度の余裕を持たせること は旅客輸送という航海の安全面では不可欠な要素で ある。これに対する1 つの解として停泊中に継ぎ足 し充電を行う方法が考えられる。短時間で電池充電 状態(SOC:State Of Charge)を回復することができ れば複数の課題をバランス良く改善することができ る。短時間での SOC 回復には充電電力を大きくす る必要があるが、現行の CHAdeMO 規格に準拠し た充電器はその性能に制限がある。そこで本研究は 充電器の性能を最大限に引き出すというアプローチ により課題に応える。その手段として、後に詳述す る電池システム構成の最適化に関する検討を行った。 評価検討のためのツールとして SOC の時間推移が 把握できるシミュレーションを作成した。シミュレ ーションの運用にあたり、本論文では東京海洋大学 所有の電池推進船「らいちょうN」を短距離定期観 光船として見立てた。これにより CHAdeMO 規格 に準拠した電池推進船の電池システムを検討した。

2. 電池推進船らいちょう N について

2.1 らいちょうNの仕様

らいちょう N の主要目を表 1、電気系統の概略を 図1に示す。らいちょう N は二軸船であり、電動機、 インバータに加えて、電池も左舷側と右舷側は独立 した系統となっている。したがって、充電の際は左 舷と右舷それぞれ別々に充電する。左舷側のセル数 は 1440 個(直列数 144、並列数 10)、右舷側セル数 は 1728 個(直列数 144、並列数 10)、右舷側セル数 は 1728 個(直列数 144、並列数 12)という構成にな っている。なお、船内ユーティリティー電力を右舷 側電池から供給するため、左舷側と比較して右舷側 のセル数が多く、電池容量も大きい。一方で直列数 は同じであるため、満充電時の電池システム電圧は 左右舷共に等しい。

表1 らいちょうNの主要目

全長	14m	モーター定格	45kW×2
船幅	3.5m	定員	乗組員2名 旅客10名
総トン数	9.1GT	右舷電池容量 左舷電池容量	240Ah 200Ah

図1 らいちょうNの電気系統図

2.2 CHAdeMO について

らいちょう N の充電方法は電気自動車用の急速充 電規格である CHAdeMO 方式⁽¹⁾を採用している。 CHAdeMO プロトコル準拠の充電器メーカーは、世 界で 40 社を超えており、充電設備としての価格は 低下してきている。このため、らいちょう N のよう にシステム全体を CHAdeMO プロトコルに準拠す ることは充電インフラ整備の低コスト化、高信頼性 を得る上で利点がある。現在の CHAdeMO 方式で は最高充電電圧 450[V]、最大充電電流 125[A]、最 大充電電力 50[kW]と制限が設けられており、この 範囲で充電制御がなされる(図 2 参照)。図から明ら かなように充電器の性能を最大限に引き出す(充電 電力を最大にする)ためには出来るだけ、高電圧、大

図2 CHAdeMO 充電規格における電流と電圧の関係

2.4 船速と合計推進出力の関係

一般に船速と要求推進出力の間には三乗の関係が ある。らいちょうNにも図3に示すように同様の傾

図3 らいちょうNの船速と合計推進出力の関係

向があり、本研究ではこの関係をシミュレーション に組み込んだ。

3. シミュレーション構築時の留意事項

航行中、停泊中の SOC 推移を把握するためのシミ ユレーションを構築した。シミユレーションの構築 にあたり留意されるべき事項を以下に述べる。

3.1 充放電電圧特性、終止電圧

一般に電池はその電気化学的特性により内部イン ピーダンスを持つため充放電レートにより電圧値が 変動する。本研究のシミュレーションではこの特性 を反映できるようにしている。くわえて、内部イン ピーダンスを考慮した定電流、あるいは定電圧充電 の制御モードの切り替えもシミュレーションに組み 込んでいる。

充電器の出力回路のスイッチング動作により、充 電電流は脈動する。この脈動によって、充電電圧も 脈動する。CHAdeMOの充電電圧の上限は 450[V] であるから、これを考慮してディレーティングする 必要がある。このため、本研究では充電電圧の上限 を 440[V]と設定した。また、リチウムイオン電池は 劣化、破損を防ぐ為に個々のメーカーによって、放 電終止電圧が推奨されている。本研究でも推奨され る放電終止電圧を下回らないよう留意する仕組みを 導入した。

3.2 電池残量と SOC

本来電池充電状態を表す SOC は定格電流容量 [Ah]に対する残存電流容量[Ah]を百分率で表した数 値として定義されている。しかし、電池推進船のエ ネルギー管理や建造計画を検討する上では、電池残 量は内燃機関船における燃料残量のように推進用エ ネルギーの残量として把握できる方が望ましい。そ こで本論文では、電池定格電流容量[Ah]と公称電圧 [V]の積を定格電力容量[kWh]と定義し、この定格電 力容量[kWh]を基準とした電力容量[kWh]による電 池残量を SOC と再定義し、計算に利用した。

3.3 船内電力

船内では船内ユーティリティ用直流 12V 電源の 鉛蓄電池が、停泊中、航行中共に常時稼働している。 この鉛蓄電池を充電する際は、右舷側リチウムイオ ン電池から DC-DC 変換器を通して充電している。 本シミュレーションはリチウムイオン電池(主推進 用)だけでなく、鉛蓄電池(ユーティリティ用)の SOC も同時に考慮できるようにしている。本論文では、 DC-DC 変換器定格容量を 2.5[kW]、船内電力を 2[kW]一定と設定し計算した。

4. シミュレーションによる電池システム構成の最適化

シミュレーションする際の共通の航海条件⁽²⁾は、航 行距離 7.7[mile]、平均船速 6.5[knot]、停泊時の充 電時間 21[min]、離着岸および充電準備作業時間 3[min]、1回目の航行開始時における SOC を 100[%] として与えた。1日に5回航海することを想定して おり、停泊中に右舷、左舷の順に継ぎ足し充電を行 う。

シミュレーション結果の一例を図4に示す。図4 は、らいちょうNと同じ電池システム構成の場合で の計算結果であり、定格電力容量は145.2[kWh]で ある。5回の航海と4回の停泊(継ぎ足し充電)を行っ た場合、5回目の航海終了時におけるSOCは左右舷 で平均24.4[%]となった(17.33[kWh])。なお、シミ ュレーション実施にあたり必要なパラメータの一例 を表2示す。

図4 らいちょうNの電池システム構成でのシミュレーション結果

表2 シミュレーション実施の際に必要なパラメータの主要目

	パラメータ	単位
IJ	右舷セル直列数	
チゥ	左舷セル直列数	
Д	右舷セル並列数	
イ	左舷セル並列数	
オ	セル公称電圧	V
ン雷	セルあたり電池容量	Ah
池	継ぎ足し充電時間	min
	Ah	
離着	min	
	kW	
	knot	
	mile	

4.1 シミュレーション時の電池システム構成

充電器の性能を最大限に発揮させる為に、らいち ようNのセル直列数とセル並列数を変更しシミュレ ーションした。表3に各々の電池システム構成を示 す。セル直列数が増加することで、電池システム電 圧の変動範囲が高くなる。各条件のセル総数はでき るだけ現行のらいちょうNと同等(3168個)となるよ う直並列数を調整した。その結果、セル総数に若干 の差異が生じたものの、電力容量の差異は±0.3[%] 以内であり、シミュレーション結果を左右するほど の影響はない。

表 3	シミ	ュレー	ーショ	ン時の)電池シ	/ステ	· ム樟	鵦成条	件
-----	----	-----	-----	-----	------	-----	---------	-----	---

	主	推進用電池セ	雪口の亦動な囲[V]	
	直列数	並列数	総数	■上の変動範囲[V]
	122	24	3172	255-317
	127	25	3175	266-330
	132	24	3168	275-343
Γ	138	23	3174	291-359
	144	22	3168	317-375
	151	21	3171	324-393
Γ	158	20	3160	338-411
	167	19	3173	363-435
Γ	176	18	3168	376-440

4.2 シミュレーション結果

表3の条件でシミュレーションした結果が図5で ある。図5は、シミュレーションで5回航海させた 直後の SOC を比較したものである。セル直列数の 増加によって電圧の変動範囲が上昇し、充電電力が 増加した結果、セル直列数167個の時に5回目の航 海終了時の SOC が最も大きくなった。しかし、セ ル直列数が 176 個の時、5 回目の航海終了時の SOC が減少した。この理由として、ディレーティングし た充電電圧の影響が考えられる。本来セル直列数 176 個の時、電池定格電圧は 458[V]である。しかし、 ディレーティングした電圧 440[V]を充電電圧の上 限としている為、18[V]分の電池容量が使用されずに 残った。このため、セル直列数 176 個の 5 回目の航 海終了時の SOC が減少した。したがって、らいち ょう N を基準として電池システム構成の最適化を 検討した場合は、セル直列数が 167 個の時に 5 回目 の航海終了時の SOC は最も大きくなり、最適な電 池システム構成になると考えられる。

以上のことから CHAdeMO 規格に準拠するシス テムを持つ場合、電池システム電圧が CHAdeMO 規格の充電電圧の上限を越えない範囲でセル直列数 を増加させれば、充電電力が大きくなる。これによ り、停泊中に実施する短時間の継ぎ足し充電であっ ても SOC 回復量が大きくなった。その結果、電池 残量に余裕を持たせることが可能となり、5 回目の 航海終了時の SOC が大きくなることが分かった。

図5 各々のセル直列数に応じた5回目の航海終了時の SOC

4.3 セルの削減

先に述べたとおり、ある航海条件(航路、船速、充 電時間、離着岸作業時間等)を与えた場合、らいちょ うN(セル直列数144個)の電池残量は約1/4(24.4[%]、 17.33[kWh])程度であった。仮に5回目の航海終了 時に同等程度の残量があれば良いと考えれば、電池 システム構成の変更により必要なセル総数を削減す ることも可能になる。そこで、5 回目の航海終了時 の電池残量が 17.33[kWh]前後となる条件を満たす ようにセル直列数、並列数、及び総数を変更した。 その検討結果を図6に示す。図6はセル直列数、セ ル総数、5 回目の航海終了時の電池残量[kWh]の関 係である。セル直列数を144 個よりも増加やすと、 必要なセル総数は少なくなる。一方で、セル直列数 が144 個より減少すると、必要なセル総数は増加し た。らいちょうNを基準として削減を検討した場合 は、セル直列数167 個の時に最もセルを削減(396 個) できる。すなわち、最適な電池システム構成であれ ばセルを大きく削減することが可能であり、電池シ ステムのコスト削減が期待できる。

図6 セルの直列数、総数、および5回目の航海終了時の電池残量

5. おわりに

セル直列数を充電電圧の上限を越えない範囲で増 加させることで、充電器の性能を最大限に発揮でき ることが可能であると分かった。しかし、セル直列 数が増加し母線電圧が上昇すると、インバータ内の 半導体デバイスの耐圧上限という新たな課題が生じ る。くわえて、インバータ効率の問題など未検討の 課題が残っている。今後はこれらの課題を含めた総 合的な観点から検討し評価を行う。

参考文献

- (1) JIS D61851-23、「電気自動車充電システム第 23 部:直流充電ステーション」
- (2) 竹内透、山岸雅、木船弘康 「電池推進船らいちょうNを用いた運航プランとシステム構成について」、第84回マリンエンジニア学会学術講演会講演論文集 pp.143-146(2014)